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Introduction

FLAG II - arXiv:1310.8555
Flag did a great job
They already gave an average for ml = mu+md

2 , ms and md/mu

If they did the same for mc and mb, I would’ve been even more relaxed

Methods that I want to discuss
Instead of filling you with numbers, I prefer to discuss the following points:

Strategies for heavy quarks
Relevance of quark mass ratios
Nonperturbative renormalization approaches

Quantitative results that I want to discuss
Collect the contributions presented at this conference for all quark masses
Update averages for mc , mb, md/mu



Relevance of quark mass values

Input parameters for other computations
Countless phenomenological applications
Examples:

charm effect in the loops to B-physics observables in FCNC processes
cross section of the H → bb̄ decay, dominant mode for a mH = 126GeV in SM

Consistency: Universality of continuum limit
Quarks are confined, no comparison with mexp

q available. Instead, comparison in a specific
renormalization scheme and at a specific renormalization scale.
Traditionally it is MS and µ = 2 GeV (except for c, b-quark), now moving to higher scales
Higher scale → more accurate comparison with LQCD results obtained in non-MS schemes
Increase in precision of the computation allows to check consistency of lattice methods

Flavor theory
Grand Unified Theories predict quark masses in terms of other fundamental parameters
Example SU(5): me = md , mµ = ms , mτ = mb

We do not know the true Flavor model, so we can test ability of suggested models
to reproduce quark mass hierarchy → provide bounds on GUT



Computing renormalized quark masses

Regularize the theory

LQCD =
∑

f ∈{u, d , s, c}

ψ̄f
(
/D + mf

)
ψf + . . .

Introduce regulator: lattice scale a
Nf + 1 parameters: 1 for each quark and absolute scale, related to ΛQCD

Renormalize the theory
Tune parameters to keep physics fixed while removing the cut-off

Appropriate choice: quantities strongly depending upon mf
Typical choice: pseudoscalar meson masses and decay constants (recently also baryon
masses)

The procedure produces:

bare quark masses (parameters of the Action)
lattice spacings



Lattice quark masses and their ratios

Lattice quark masses
Every lattice computation must tune quark masses to reproduce QCD in the continuum limit

Tune through some quantity, typically meson masses (combining with continuum limit)
Bare parameters of the Lagrangian: ambare

q available to everybody

Knowledge of ambare
q describing constant physics line essential to perform simulations

But not useful to compare between different regularizations

Ratio of quark masses
As long as the quark mass is multiplicatively renormalizable

mren
q = Zmmbare

q

and in renormalization schemes in which Zm does not depend upon mq:

∂mqZm = 0

ratio of renormalized quark masses can be computed through bare quark mass ratios:

mren
q1

mren
q2

=
Zmmbare

q1

Zmmbare
q2

=
ambare

q1

ambare
q2

Let us discuss a concrete example



Tuning ml = (mu + md) /2 and ms bare masses - MILC collaboration

Light quark
At each β tune the ratio:(

a2)M2
π (am)

(a2) f 2
π (am)

to reproduce (Mπ/fπ)2
exp and learn:

ambare
light from corresponding am

a from afπ
(
ambare

light

)
/f exp
π

Strange quark
Tune the quantity: 2M2

K −M2
π

(independent from mlight at LO)
→ learn ms

Charm quark
Similarly, tune mc to reproduce MDs Javad Komijani talk, Wed. 25, 12.10



Extrapolating to the continuum ms/ml - MILC collaboration

Continuum limit
Once determined

[ms/ml ] (a)

at each lattice spacing separately, the
continuum limit must be taken

Renormalization Group Invariant?
IF QED is not included or
IF QED is included, for ratios of
same charged quarks

Undervalued quantities!
(Almost) Every lattice groups
tuning to physical point is in the
position to compute ratios
But this information is scarcely
emphasized Javad Komijani talk, Wed. 25, 12.10



Renormalization approaches

To give an absolute value for the renormalized quark mass we need to know Zm

Non-Perturbative renormalization
Rome-Southampton method or Schroedinger functional
Then perturbatively matched to MS (conventionally)

Perturbative renormalization
Schroedinger functional costly
Rome-Southampton not always easy to implement (e.g. Staggered quarks)

Forced to use perturbation theory to renormalize
Convergence is quite unreliable and at least 2-loop perturbative correction is needed
Difficult to go beyond 2 loop calculations on the lattice (but see: 3 loop stochastic
computation by M.Brambilla et al., 1402.6581, cfr. talk by M. Brambilla, Fri 27, 16.50 )

How to avoid the renormalization on the lattice?
Compute a RGI quantity
Match it to a continuum, perturbative computation in terms of MS masses and coupling

Examples:
Moments of the correlators
Energy of the non-relativistic heavy meson



Learning Zm from charm correlator moments

Starting point - HPQCD coll., Phys.Rev. D78 (2008) 054513
Adimensional moments of two points correlation function between charm currents:

G (j)
n =

∑
t

(t/a)nG (j) (t) , G (j) (t) =
(
ambare

c

)2∑
~x

〈
j ren (~x , t) j ren

(
~0, 0
)〉

Reduced moments

R(j)
n =

aMmes j

2am0
c

√√√√ G (j)
n

G (j)
n−2

G (j0)
n−2

G (j0)
n

Built of bare lattice quantities
Automatically renormalized
(simplified expression if PCAC
holds)
Can be extrapolated to the
continuum limit
Perturbative if n not too big
(exponentially suppressed,
n−power enhanced in t)

0.0 0.1 0.2 0.3 0.4

a2  (GeV−2 )

1.1

1.2

1.3

1.4

1.5

1.6

R
n

R8

R10

R4

R6

Update of C.McNeile et al., PRD82 (2010)

Compare it with continuum perturbation theory expressed in terms of mren
c



Learning Zm from charm correlator moments

Lattice input

RLQCD
n computed numerically:

Interpolated to ambare
c reproducing Mηc (estimating EM & disconn. diagram)

Extrapolated to the continuum and chiral limit

Continuum perturbation theory input

Khum et al. Nucl.Phys. B778
(2007), at 3 order αs

RPQCD
n =

rPQCD
n

(
αMS, µ/mc

)
2mMS

c (µ) /Mmes j

Comparing RLQCD
n and RPQCD

n

mMS
c (µ) =

Mexp
mes j

2
rPQCD
n

RLQCD

5

TABLE II: Simulation results for Rn(a, mu/d, ms) for different lattice parameter sets (see Table I). The inverse lattice spac-

ing a−1 is in GeV. Extrapolations to zero lattice spacing and zero sea-quark masses are given for each quantity, together with
the corresponding value for mc(µ) (in GeV) or αMS(µ) for nf = 4 flavors and µ = 3GeV.

Set: 1 2 3 4 5 6 7 8
a−1: 1.31 1.31 1.62 1.60 1.63 2.26 2.28 3.24 a, mu/d/s → 0 mc(µ)
R6 1.448(3) 1.447(3) 1.494(3) 1.492(3) 1.491(3) 1.514(3) 1.511(3) 1.519(3) 1.528(11) 0.986(10)
R8 1.372(3) 1.371(3) 1.387(3) 1.386(3) 1.384(3) 1.374(3) 1.373(3) 1.370(3) 1.370(10) 0.986(11)
R10 1.329(3) 1.328(3) 1.326(3) 1.326(3) 1.324(3) 1.306(3) 1.305(3) 1.304(3) 1.304(9) 0.973(19)
R12 1.294(3) 1.293(3) 1.284(3) 1.284(3) 1.281(3) 1.263(3) 1.262(3) 1.262(3) 1.265(9) 0.969(23)
R14 1.264(3) 1.264(3) 1.252(2) 1.251(2) 1.248(2) 1.232(2) 1.231(2) 1.232(2) 1.237(9) 0.967(28)
R16 1.239(2) 1.239(2) 1.228(2) 1.226(2) 1.223(2) 1.207(2) 1.206(2) 1.210(2) 1.215(9) 0.965(33)
R18 1.218(2) 1.218(2) 1.208(2) 1.205(2) 1.202(2) 1.187(2) 1.187(2) 1.191(2) 1.198(9) 0.963(38)

Set: 1 2 3 4 5 6 7 8
a−1: 1.31 1.31 1.62 1.60 1.63 2.26 2.28 3.24 a, mu/d/s → 0 αMS(µ)
R4 1.162(1) 1.161(1) 1.189(1) 1.187(1) 1.187(1) 1.223(1) 1.221(1) 1.249(1) 1.281(5) 0.252(6)

R6/R8 1.055(1) 1.055(1) 1.078(1) 1.076(1) 1.077(1) 1.101(1) 1.101(1) 1.109(1) 1.113(2) 0.249(6)
R8/R10 1.033(1) 1.033(1) 1.046(1) 1.045(1) 1.046(1) 1.052(1) 1.052(1) 1.051(1) 1.049(2) 0.224(31)
R10/R12 1.027(1) 1.027(1) 1.033(1) 1.033(1) 1.034(1) 1.034(1) 1.034(1) 1.033(1) 1.031(2) 0.241(30)
R12/R14 1.023(1) 1.023(1) 1.025(1) 1.026(1) 1.026(1) 1.025(1) 1.025(1) 1.024(1) 1.022(2) 0.243(47)
R14/R16 1.020(1) 1.020(1) 1.020(1) 1.021(1) 1.021(1) 1.020(1) 1.020(1) 1.019(1) 1.017(2) 0.242(70)
R16/R18 1.017(1) 1.017(1) 1.016(1) 1.017(1) 1.017(1) 1.017(1) 1.017(1) 1.016(1) 1.014(2) 0.241(96)

Moment R4 and the ratios of moments are more accu-
rately determined in our simulation than the other Rns,
and so typically require an additional term in the (amc)

2

expansion. Again, however, the eight terms we use are
many more than the minimum needed.

Our final error estimates depend upon the widths of
our priors [29]. We tested these widths in a couple of
ways, beyond including simulation data from the coars-
est lattices. First we compared our widths with the val-
ues suggested by the empirical Bayes procedure described
in [28]. This procedure uses the variation in the data it-
self to determine, for example, an optimal value for σc.
The widths we use are two to four times larger that what
is indicated by the empirical Bayes criterion, suggesting
that our error estimates are conservative. The dominant
fit coefficients in the (amc)

2 expansion for R6, for ex-
ample, range between −0.05 and −0.20, which is much
smaller than the σc = 1 we use.

As a second test, we verified that our extrapolation
procedure gives consistent results when data from either
the smallest or the largest lattice spacing is discarded.
That is, we demonstrated that results obtained from the
truncated data sets agree within errors with results from
the full set of simulation data. This shows that our error
estimates are robust even when working with limited sim-
ulation data sets. As mentioned above, our final results
are not much affected by data from the coarsest lattice
spacing. Simulation data from the finest lattice spacing,
on the other hand, has a very significant impact.

FIG. 2: mc(µ), for µ = 3GeV and nf = 4 flavors, from dif-
ferent moments of correlators built from four different lattice
operators. The gray band is our final result for the mass,
0.986 (10) GeV, which comes from the first two moments of
the pseudoscalar correlator (upper-left panel).

IV. EXTRACTING mc(µ) AND αMS(µ)

To convert the extrapolated reduced moments into
c masses and coupling constants, we require perturba-
tive expansions for the rn in Eq. (12). These are easily
computed from the expansions for gn [3, 4, 5, 6, 7, 8, 9]
using Eq. (11); details can be found in the Appendix.
The perturbative expansions have the form

rn = 1+rn,1αMS(µ)+rn,2α
2
MS

(µ)+rn,3α
3
MS

(µ)+. . . (15)

In this way we learn ZMS
m
(1

a

)
= mMS

c
(1

a

)
/ambare

c /a using a physical input (Mmes j)



Scared of non-perturbative effects?

Perturbativity issues
HPQCD collaboration performed various checks:

stability of mc (µ) as n is changed to probe perturbativity window of Rn
extending the analytic parametrization of Rn including condensates

ETMC repeated this study and compared with ZRI−MOM
m (M.Petschlies, Lattice 2011):

compatible with direct determination based upon ZRI−MOM
m (preliminary!)

not clear advantage in terms of precision

Viability of the method
Is the method correct? Yes (for circumstantial evidence)

Various internal consistency checks
Results compatible with more traditional approaches

Is it useful? Yes and no
Do not need to set-up Non Perturbative Renormalization program
But it is subject to similar complications (αm

s truncation, n-window, etc)

Not clearly superior, but a viable and interesting alternative

Future improvements and additional checks
HPQCD promised they will:

check consistency with the RI-MOM-like determinations
shift to determine Zm from b quark in the future (more reliable perturbation theory)



Binding energy of non-relativistic heavy meson

Binding energy at finite lattice spacing

Mexp
Υ = 2mpole

b + ∆MΥ, ∆MΥ = bind. energy
Non Relativistic QCD (NRQCD) is non-renormalizable

mpole
b can be determined by working at fixed lattice spacing

Lattice-spacing-per-lattice-spacing: ∆M = a−1 (aE sim−2aE 0)
Relation between divergent quantities in the continuum limit

Ingredients

tune Mbb̄ = a−1 (3aMsim
Υ + aMsim

ηb

)
/4 to its physical value, through kinetic energy Mkin

extracted from dispersion relation of NRQCD meson → mbare
b

compute ∆MΥ subtracting (power divergent in a!) E 0 determined at 2 loops using
automated perturbation theory & high β simulations (cfr. C.Monahan, Latt’13)

Determine 2mpole
b = Mexp

Υ − a−1 (aE sim
Υ − 2aE 0), cross-check using Bs

Compare different lattice spacing (no continuum limit can be taken)

Outcome - Phys. Rev. D 87, 074018 (2013), HPQCD coll.
MILC 2+1 Asqtad ensembles, one-loop radiative corrected NRQCD action
Convert mpole

b to mMS
b (mb) = 4.166(43) GeV for Nf = 5

Improved over mMS
b (mb) = 4.4(3) GeV by A. Gray et al., PRD 72, (’05), including O

(
β2)



Alpha collaboration approach to heavy quarks - Phys.Lett. B730 (2014)

Matching HQET and QCD
After long efforts Alpha matched HQET to QCD at O (1/mh)

LHQET = ψ̄h

[(
D0 + mbare

)
− ωkinD2 − ωspinσ · B

]
ψh

by making use of Step Scaling method [cfr. JHEP 1209 (2012) 132]
The theory is renormalizable order by order

Observable of Expansion at O(1/mh)

Terms ∝ ωkin, ωspin are of O (1/mh) and treated as operator insertions:

〈O〉 = 〈O〉stat + ωkin
〈
Oψ̄hD2ψh

〉
stat + ωkin

〈
Oψ̄hσ · Bψh

〉
stat

and similarly MB = mbare + Estat + ωkinEkin + ωspinEspin ,

Ekin, Espin determined from time behavior of correlation functions with operator insertions

Determination of mren
b

Interpolate MB
(
mbare) to the mbare

b reproducing Mexp
B while:

chirally and continuum extrapolating MB
(
mbare , Mπ, a

)
in HMChPT

considering mbare as a function of RGI mass as determined with Schroedinger Functional
converting it to mMS

b using perturbation theory
X Nf = 2, improved wrt the quenched computation [M.Della Morte, JHEP 0701 (2007)]
X 1/mh corrections turn out to be very small



ETM Nf = 2+ 1+ 1 determination (presented at Latt.’13)

RI-MOM for Nf = 2+ 1+ 1 - 1403.4504
Mass independent renormalization: all masses much smaller than µ
Usual approach to match MS: take chiral limit of Z as done for observables
Nf = 2 + 1 + 1 simulations contain massive s and c quarks

ETM collaboration performed dedicated simulations with Nf = 4 light quarks

Cut-off effects
Quark masses determined tuning fπ and pseudoscalar meson masses
Reduce cut-off effects taking ratios between similar quantities (e.g. Mπ/Ms̄s , MDs/Mc̄s)

0 0,02 0,04 0,06 0,08
ml/Ms´s´

6,5

7

7,5

8

8,5

M
π2 /(m

l M
s´

s´
)

β=1.90 V/a4=323x64
β=1.90 V/a4=243x48
β=1.95 V/a4=323x64
β=1.95 V/a4=243x48
β=2.10 V/a4=483x96
Continuum Limit

Figure 5: Chiral and continuum extrapolation of M2
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Figure 6: The same as in Fig. 5, but for the pion decay constant f⇡ in units of Ms0s0.

3.3 Results for the pion sector

In this section we present the results of the four analyses (A, B, C, D) carried out
in the pion sector. We have adopted the values of the RCs ZP corresponding to the
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ETM Nf = 2+ 1+ 1 determination of b quark mass

Extrapolating from c region

The mass Mhl of a heavy-light meson diverges in the static limit: limmh→∞
Mhl
mh

= 1
Could be directly used to extrapolate Mhl (mh, ml , a) from h = c region

Ratio method [cfr. R.Frezzotti et al., JHEP 1004 (2010)]

Instead, consider a series of masses m(0) = mc , m(1) = λmc , . . . m(n) = λnmc ,

y
(
m(n)

h , λ; ml , a
)

= λ
Mhl

(
m(n)

h ; ml , a
)

Mhl

(
m(n)

h /λ; ml , a
) mh→∞−→ 1

Compute y
(
m(n)

h , λ; ml , a
)
, extrapolate to the continuum, and reconstruct Mhl (mh, ml )

Results for mb

Tune mb to reproduce MB
[see: N.Carrasco et al., JHEP 1403 (2014)]
Preliminary improvement:

Use GEVP
Adopt more sophisticated ratios yQ

GEVP

w-opt

SL

µ̄−1
b

c = 0.75 (@ NLL)

1/µh (GeV−1)

y Q
(µ

h
)

0.80.70.60.50.40.30.20.10.0

1.004

1.002

1.000

0.998

0.996

0.994

Figure 2: c = 0.75: yQ against 1/µh at NLL using SL, w-opt and GEVP two-point correlation

functions. The fit ansatz is of the form yQ(µh) = 1 +
η1

µh

+
η2

µ2
h

. Input data of the M2

type have been used.
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RBC/UKQCD Physical point computation

Physical point simulation
Nf = 2 + 1 + 1 Möbius Domain Wall fermions,
2 lattice spacings: a−1 = 2.358(7), 1.730(4) GeV
Quark masses essentially at the physical point (Mπ = 139 MeV)

Global fit
How to re-tune to Mπ0 = 135 MeV?
Combine with heavier pion data to slightly extrapolate

mMS
l (3GeV) = 3.014(39)stat(0)chir (5)fse(35)ren MeV

mMS
s (3GeV) = 82.27(92)stat(0)chir (6)fse(95)ren MeV

Use many inputs in a global fit (MK , Mπ, MΩ, fK , fπ, etc.)



Tuning mc , s from baryon spectrum - C. Alexandrou et al., arXiv:1406.4310

Physical inputs

Fix ms from triply stranged baryon Ω

13

quark mass after correcting for cut-o↵ e↵ects are shown in Fig. 14, where indeed all data fall on the same curve and

the physical masses of the ⌦� and ⇤+
c baryons are reproduced. The fit parameters m

(0)
⌦ , c

(1)
⌦ and ci are collected in

Table VII. The results in lattice units and the continuum extrapolated values in physical units for ⌦� and ⇤+
c are

listed in Table VI.
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FIG. 13. Tuning of the renormalized strange and charm quark masses with the experimental values of the ⌦ (left) and ⇤+
c

(right) masses respectively.

aµl am⌦ m⌦ (GeV) am
⇤+

c
m

⇤+
c

(GeV)

� = 1.90

0.0030 0.8380(77) 1.6575(609) 1.1651(157) 2.3223(729)

0.0040 0.8374(131) 1.6562(648) 1.1714(92) 2.3356(678)

0.0050 0.8491(118) 1.6808(637) 1.1816(78) 2.3571(670)

� = 1.95

0.0025 0.7484(60) 1.7111(535) 1.0236(52) 2.3523(584)

0.0035 0.7406(72) 1.6924(544) 1.0261(45) 2.3581(581)

0.0055 0.7477(67) 1.7093(540) 1.0434(43) 2.3997(580)

0.0075 0.7409(62) 1.6931(536) 1.0468(53) 2.4077(585)

� = 2.10

0.0015 0.5676(34) 1.6816(418) 0.7817(33) 2.3234(459)

0.0020 0.5568(54) 1.6484(437) 0.7796(68) 2.3171(494)

0.0030 0.5651(51) 1.6740(434) 0.7883(43) 2.3438(467)

TABLE VI. Masses of the ⌦ and ⇤+
c baryons in lattice and physical units with the associated statistical error. The values in

physical units are continuum extrapolated.

Given the fact that we have performed a high statistics run (see Table I) using mR
c = 1186 MeV, which was our

first estimate for mR
c and since this value is consistent with the final tuned value given in Eq. (25) we will use the

high statistics results to obtain the values of the charmed baryon masses at the physical point. We have checked
that interpolation of our lattice data for the charm baryons at the tuned value of mR

c = 1173(2.4) yield masses at
the physical point which are totally consistent with the ones obtained at mR

c = 1186(2.4), albeit with larger errors
due to the interpolation of the lattice results. Thus, we avoid interpolation and use the results obtained directly at
mR

c = 1186 MeV in what follows.

III. LATTICE RESULTS

Lattice results are obtained for three lattice spacings allowing to assess cut-o↵ e↵ects. We start by addressing any
possible isospin breaking e↵ects on the baryon masses.

Fix mc from singly charmed baryon Λc
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c

(right) masses respectively.

aµl am⌦ m⌦ (GeV) am
⇤+

c
m

⇤+
c

(GeV)

� = 1.90

0.0030 0.8380(77) 1.6575(609) 1.1651(157) 2.3223(729)

0.0040 0.8374(131) 1.6562(648) 1.1714(92) 2.3356(678)

0.0050 0.8491(118) 1.6808(637) 1.1816(78) 2.3571(670)

� = 1.95

0.0025 0.7484(60) 1.7111(535) 1.0236(52) 2.3523(584)

0.0035 0.7406(72) 1.6924(544) 1.0261(45) 2.3581(581)

0.0055 0.7477(67) 1.7093(540) 1.0434(43) 2.3997(580)

0.0075 0.7409(62) 1.6931(536) 1.0468(53) 2.4077(585)

� = 2.10

0.0015 0.5676(34) 1.6816(418) 0.7817(33) 2.3234(459)

0.0020 0.5568(54) 1.6484(437) 0.7796(68) 2.3171(494)

0.0030 0.5651(51) 1.6740(434) 0.7883(43) 2.3438(467)

TABLE VI. Masses of the ⌦ and ⇤+
c baryons in lattice and physical units with the associated statistical error. The values in

physical units are continuum extrapolated.

Given the fact that we have performed a high statistics run (see Table I) using mR
c = 1186 MeV, which was our

first estimate for mR
c and since this value is consistent with the final tuned value given in Eq. (25) we will use the

high statistics results to obtain the values of the charmed baryon masses at the physical point. We have checked
that interpolation of our lattice data for the charm baryons at the tuned value of mR

c = 1173(2.4) yield masses at
the physical point which are totally consistent with the ones obtained at mR

c = 1186(2.4), albeit with larger errors
due to the interpolation of the lattice results. Thus, we avoid interpolation and use the results obtained directly at
mR

c = 1186 MeV in what follows.

III. LATTICE RESULTS

Lattice results are obtained for three lattice spacings allowing to assess cut-o↵ e↵ects. We start by addressing any
possible isospin breaking e↵ects on the baryon masses.

Lattice spacings determined using Pion & Proton masses

Chiral and continuum extrapolation

MΩ = Mchir
Ω + cΩM2

π + dΩa2

MΛc = Mchir
Λc + c(2)

Ω M2
π + c(3)

Ω M3
π + dΩa2

More challenging than meson analysis: less well founded Chiral theory and FSE guidance

Outcomes Cfr. Ch.Kallidonis talk Wed. 25, 09:40
Observed mild dependence on volume
Reasonable agreement with determination obtained in meson sector



Electromagnetism

Hadron Self Energy
Correct inputs used to fix quark masses

Neutral pseudo-Goldstone boson masses corrected only at O
(
e2m

)
Compute electromagnetic contribution to meson masses: M̂P = MP −∆MQED

M̂2
π and

[
M̂2

K+ + M̂2
K0

]
at LO independent of mu −md → use to determine ml and ms

M̂2
K+ − M̂2

K0 ∝ B2 (md −mu) at LO, use to determine md −mu

Note: separation of QED and QCD contributions requires defining a scheme

BMW results
Electro-quenched simulations (not related to recent QCD+QED project 1406.4088)
Determined from ChPT LEC B2 (1310.3626) and Kaon mass difference PRL 111 (2013)

Preliminary: mMS
u, d (2GeV) = {2.29(6)(5), 4.65(6)(5)}, mu/md = 0.49(1)(1)

Other results
ETM combining with RM123 results obtained expanding IB at first order PRD87 (2013)
Fermilab: updating the Kaon mass splitting results of 1301.7137 combining with
quark mass dependence found in decay constant analysis (cfr. talk by J.Komijani, Wed 26)
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Conclusions

Ratios of quark masses
Renormalization constants cancel in ratios
Many groups could contribute to estimate quantities such as ms/ml

Please come forward...

Absolute quark mass values
Many ways to compute renormalized quark masses
Only a few results currently available for heavy quarks

Thanks a lot to...

D.Becirevic
C.Bernard
A.Constantinou
C.Davies
P. Dimopoulos

F.Di Renzo
J.Frison
N.Garron
C.Kelly
C.Monahan

V.Lubicz
A.Portelli
C.Sachrajda
C.Tarantino

For sending their material and for the very useful discussion!


